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Introduction  
     In mixed boundary value (MBV) problems, the nature of the boundary condition can change 

along a particular boundary (finite, semi-infinite or infinite in length), say from a Dirichlet 

condition to a Neumann condition. Most MBV problems are solved using classical techniques such 

as separation of variables (domain of limited extent) or transform methods (domain of semi-infinite 

or infinite extent) which lead to dual or triple integral equations. Also, they are usually solved when 

a steady state condition is reached [1]. In authors’ knowledge, the only exception is the paper by 

Sadhal about solids with partially contacting interface [2]. In this work we deal with both steady 

state and transient MBV problems which are solved as inverse heat conduction (IHC) problems [3] 

using Green’s functions [4] and superposition in space and time.     

 

Problem formulation 

     Consider a plate of thickness L along x  and semi-infinite in the y direction with temperature-

independent properties and initially at zero temperature. The plate is thermally insulated at 0y   

and subject to a constant heat flux 0q
 
at its boundary surface 0x   for 00 y W  . The remaining 

part of this boundary is kept at zero temperature as well as the opposite boundary at x L . A 

schematic of this two-dimensional problem denoted by X(21)1B(10)0Y20B0T0 is given in Fig. 1a, 

where “(21)” denotes mixed boundary conditions of 2
nd

 and 1
st
 kinds.  

     Its mathematical formulation is 
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     We are interested in computing the temperature distribution of the plate. For this purpose, the 

problem can be solved for the unknown heat flux (0, , ) ( , )x xq y t q y t  at the boundary surface 0x   

for 0y W  (flux-based formulation) or, alternatively, for the unknown temperature 

(0, , ) ( , )T y t T y t  at the boundary surface 0x   for 00 y W   (temperature-based formulation).  
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Figure 1 – A schematic of the two-dimensional 

transient problem with mixed boundary conditions at 

the boundary surface 0x  .  

 

Solution of the inverse problem 

     This inverse formulation requires that we first solve the forward problem denoted by X21B(y-t-

)0 Y20B0T0, where “(y-)” denotes an arbitrary space function along y. For this problem, the 

discontinuous mixed boundary condition in Eq. (1b) reduces to a simple non-homogeneous 

boundary condition of the 2
nd

 kind, where the heat flux ( , )xq y t  in the x direction is unknown for 

0y W . It will simply be termed as ( , )q y t  afterwards.  

     As the above heat flux is not uniform, it can be convenient to perform a discretization in space 

with uniformly-spaced elements ( y ). The j-th heat flux component ( )n

jq
 
(with 1,2,3,...j  ) at the 

time step n t  is applied to the domain 0 0[ ( 1) , ]y W j y W j y       where it is assumed to be 

uniform. In a matrix form we have 1

0[ ]  q X X , where  
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     If we consider a generic time step n, we have 
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where 
( ) n

ijX
 
is the dimensionless temperature due to the j-th dimensionless heat flux component at 

the surface locations 1 ( 1/ 2)y i y     ( , ,...i 1 2 ) and at the n-th time step ( ( ) ( )

0/n n

j jq q q ). By 

applying a superposition in space and time, the above temperatures may be computed as solutions 

of the basic “building block” X21B(y5)0Y20B0T0. These solutions can be derived by using 

Green’s functions approach [4]. Note that the ( ) nX  matrix is diagonal as ( ) ( )

11 ...   n n

iiX X  and 

also symmetric with respect to it as ( ) ( )  n n

ij jiX X . Similarly, ( )

0

n

iX
 

is the dimensionless 

     In both methods (which are in part 

numerical and in part analytical), we have to 

solve a 2D inverse heat conduction problem 

(IHCP) [4]. In the former, we have to 

determine the unknown heat flux at the outer 

boundary surface 0x  . In the latter, we have 

to derive the temperature at the same boundary 

surface. In this work we will deal only with the 

flux-based formulation for which there are no 

measurement errors as the temperatures are 

exactly equal to zero at 0x   for 0y W . 
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temperature due to the 0-th heat flux component (applied to the domain 0[0, ]y W ) at the surface 

locations 1 ( 1/ 2)y i y     ( , ,...i 1 2 ) and at the n-th time step. Then, by using the concept of 

penetration distance [5], we can consider a limited number of heat flux components depending 

upon the accuracy desired.  

 

Results and conclusions       

     For a uniform heat flux applied to the region 00 / 2 W L , the results are given in Fig. 2 

versus /y L  for different values of the dimensionless time defined as 
2/t L . In detail, 

/ 0.05 y L  and 
2( / ) 0.1 t L . The known heat flux applied between 0 and 0 / 2W L  is also 

plotted in Fig. 2 for a better comparison with the unknown heat flux computed. Note that the 

dimensionless steady-state heat flux is of about -3.85 near the /q T  interface 0 / 2W L  vs. the 

expected value of  . This is due to the fact that -3.85 is the average value of the heat flux 

between 2 and 2.05. Reducing /y L  gives a higher value of the negative heat flux.   

     Once the heat flux components are computed, it is possible to calculate the dimensionless heat 

rate that exits the boundary at 0x   for 0 /y W L  when a steady state is reached. It is given by 
(0) 0.4315exq   . As the dimensionless heat rate that enters the boundary at 0x   for 0[0, ]y W  is 

(0) 2enq  , the heat rate exiting the back side of the plate kept at zero temperature is of 1.5685. 

     Note that the heat flux computation can be made faster since it is not necessary to have 

uniformly-spaced elements. Near the /q T  interface 0 / 2W L , in fact, we need smaller elements 

and larger ones can be used further away. 

 

 
Figure 2 – Surface heat flux as a function of /y L  with 

2/t L  as a parameter.  

Ten time steps (n = 10) have been considered.   
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